skip to main content


Search for: All records

Creators/Authors contains: "Oruc, Buse Eylul"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Background

    Thousands of school systems have struggled with the decisions about how to deliver education safely and effectively amid the COVID19 pandemic. This study evaluates the public health impact of various school reopening scenarios (when, and how to return to in-person instruction) on the spread of COVID19.

    Methods

    An agent-based simulation model was adapted and used to project the impact of various school reopening strategies on the number of infections, hospitalizations, and deaths in the state of Georgia during the study period, i.e., February 18th-November 24th, 2020. The tested strategies include (i)schools closed, i.e., all students receive online instruction, (ii)alternating school day, i.e., half of the students receive in-person instruction on Mondays and Wednesdays and the other half on Tuesdays and Thursdays, (iii)alternating school day for children, i.e., half of the children (ages 0-9) receive in-person instruction on Mondays and Wednesdays and the other half on Tuesdays and Thursdays, (iv)children only, i.e., only children receive in-person instruction, (v)regular, i.e., all students return to in-person instruction. We also tested the impact of universal masking in schools.

    Results

    Across all scenarios, the number of COVID19-related deaths ranged from approximately 8.8 to 9.9 thousand, the number of cumulative infections ranged from 1.76 to 1.96 million for adults and 625 to 771 thousand for children and youth, and the number of COVID19-related hospitalizations ranged from approximately 71 to 80 thousand during the study period. Compared to schools reopening August 10 with aregularreopening strategy, the percentage of the population infected reduced by 13%, 11%, 9%, and 6% in theschools closed,alternating school day for children,children only, andalternating school dayreopening strategies, respectively. Universal masking in schools for all students further reduced outcome measures.

    Conclusions

    Reopening schools following aregularreopening strategy would lead to higher deaths, hospitalizations, and infections. Hybrid in-person and online reopening strategies, especially if offered as an option to families and teachers who prefer to opt-in, provide a good balance in reducing the infection spread compared to theregularreopening strategy, while ensuring access to in-person education.

     
    more » « less
  2. Abstract Academic researchers, government agencies, industry groups, and individuals have produced forecasts at an unprecedented scale during the COVID-19 pandemic. To leverage these forecasts, the United States Centers for Disease Control and Prevention (CDC) partnered with an academic research lab at the University of Massachusetts Amherst to create the US COVID-19 Forecast Hub. Launched in April 2020, the Forecast Hub is a dataset with point and probabilistic forecasts of incident cases, incident hospitalizations, incident deaths, and cumulative deaths due to COVID-19 at county, state, and national, levels in the United States. Included forecasts represent a variety of modeling approaches, data sources, and assumptions regarding the spread of COVID-19. The goal of this dataset is to establish a standardized and comparable set of short-term forecasts from modeling teams. These data can be used to develop ensemble models, communicate forecasts to the public, create visualizations, compare models, and inform policies regarding COVID-19 mitigation. These open-source data are available via download from GitHub, through an online API, and through R packages. 
    more » « less
  3. Short-term probabilistic forecasts of the trajectory of the COVID-19 pandemic in the United States have served as a visible and important communication channel between the scientific modeling community and both the general public and decision-makers. Forecasting models provide specific, quantitative, and evaluable predictions that inform short-term decisions such as healthcare staffing needs, school closures, and allocation of medical supplies. Starting in April 2020, the US COVID-19 Forecast Hub ( https://covid19forecasthub.org/ ) collected, disseminated, and synthesized tens of millions of specific predictions from more than 90 different academic, industry, and independent research groups. A multimodel ensemble forecast that combined predictions from dozens of groups every week provided the most consistently accurate probabilistic forecasts of incident deaths due to COVID-19 at the state and national level from April 2020 through October 2021. The performance of 27 individual models that submitted complete forecasts of COVID-19 deaths consistently throughout this year showed high variability in forecast skill across time, geospatial units, and forecast horizons. Two-thirds of the models evaluated showed better accuracy than a naïve baseline model. Forecast accuracy degraded as models made predictions further into the future, with probabilistic error at a 20-wk horizon three to five times larger than when predicting at a 1-wk horizon. This project underscores the role that collaboration and active coordination between governmental public-health agencies, academic modeling teams, and industry partners can play in developing modern modeling capabilities to support local, state, and federal response to outbreaks. 
    more » « less